Finite element analysis of the mechanical behavior of a partially edentulous mandible as a function of cancellous bone density
نویسندگان
چکیده
Methods: A 3D finite element method was used to assess the model of a partially edentulous mandible, Kennedy Class I, with dental implants placed at the region of teeth 33 and 43. The geometric solid model was built from CT-scan images and prototyping. In the discrete model a parametric analysis was performed to analyze the influence of cancellous bone density (25 %, 50 %, 75 %) on the development of mandibular stress and strain during simulation of masticatory forces in the anterior region. Results: Maximum von Mises stress and equivalent strain values in cancellous bone were found close to the loading area (masticatory forces). The peak stress and strain values occurred in the mandibular anterior region, and for the same masticatory force the equivalent stresses increased with bone density. Conclusion: The results suggest that the stresses and strains developed in the mandibular model were affected by cancellous bone density during the simulation of masticatory activity.
منابع مشابه
تعیین توزیع تنش استخوان اطراف ایمپلنتهای فک پایین در طرحهای مختلف پروتز به هنگام Mandibular- Flexure
Statement of Problem: In the treatment of edentulous patients with implant supported fixed partial dentures several factors such as implant numbers, implant position, superstructure pattern and cantilever length must be considered. Mandibular flexture in function exerts forces in peri-implant bone, however this phenomenon has received little attention. Purpose: The goal of this finite element a...
متن کاملEvaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method
longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...
متن کاملبررسی اثر ضخامت پوشش هیدروکسی آپاتیت بر توزیع تنش در اطراف سطح تماس ایمپلنت دندانی- استخوان با روش المان محدود
Background and Aims: Hydroxyapatite coating has allocated a special place in dentistry due to its biocompatibility and bioactivity. The purpose of this study was to evaluate the relation between the hydroxyapatite thickness and stress distribution by using finite element method. Materials and Methods: In this paper, the effect of hydroxyapatite coating thickness on dental implants was studi...
متن کاملEffect of Abutment Height Difference on Stress Distribution in Mandibular Overdentures: A Three-Dimensional Finite Element Analysis
Background and Aim: Implant-supported overdentures are a treatment option for edentulous patients. One of the important factors in determining the prognosis of overdenture treatment is to control the distribution of stress in the implant-bone and attachment complex. This study assessed the effect of implant abutment height difference on stress distribution in mandibular overdentures. Materials...
متن کاملAn investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study
Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...
متن کامل